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How to selecting a small subset out of the thousands of genes in microarray data is impor-
tant for accurate classification of phenotypes. Widely used methods typically rank genes
according to their differential expressions among phenotypes and pick the top-ranked
genes. We observe that feature sets so obtained have certain redundancy and study
methods to minimize it. We propose a minimum redundancy — maximum relevance
(MRMR) feature selection framework. Genes selected via MRMR provide a more bal-
anced coverage of the space and capture broader characteristics of phenotypes. They lead
to significantly improved class predictions in extensive experiments on 6 gene expression
data sets: NCI, Lymphoma, Lung, Child Leukemia, Leukemia, and Colon. Improvements
are observed consistently among 4 classification methods: Naive Bayes, Linear discrimi-
nant analysis, Logistic regression, and Support vector machines.

Supplimentary: The top 60 MRMR genes for each of the datasets are listed in
http://crd.lbl.gov/~cding/MRMR/. More information related to MRMR methods can
be found at http://www.hpeng.net/.

Keywords: Cancer classification; gene selection; gene expression analysis; SVM; Naive
Bayes.

1. Introduction

Discriminant analysis is now widely used in bioinformatics tasks, such as distin-
guishing cancer tissues from normal tissues? or one cancer subtype from another,!
predicting protein fold or super-family from its sequence,® 6
in discriminant analysis is feature selection: instead of using all available variables

etc. A critical issue

(features or attributes) in the data, one selectively chooses a subset of features to
be used in the discriminant system. There are a number of advantages of feature
selection, to mention a few:

B dimension reduction to reduce the computational cost;
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m reduction of noise to improve the classification accuracy; and
B more interpretable features or characteristics that can help identify and monitor
the target diseases or function types.

These advantages are typified in DNA microarray gene expression profiles. Of the
tens of thousands of genes in experiments, only a smaller number of them show
strong correlation with the targeted phenotypes. For example, for a two-class cancer
subtype classification problem, 50 informative genes are usually sufficient.'® There
are studies suggesting that only a few genes are sufficient.?*39 Thus, computation is
reduced while prediction accuracy is increased via effective feature selection. When
a small number of genes are selected, their biological relationship with the target
diseases is more easily identified. These “marker” genes thus provide additional sci-
entific understanding of the problem. Selecting an effective and more representative
feature set is the subject of this paper.

There are two general approaches to feature selection: filters and wrappers.'8:20
Filter type methods are essentially data pre-processing or data filtering methods.
Features are selected based on the intrinsic characteristics, which determine their
relevance or discriminant power with regard to the target classes. Simple methods
based on mutual information,? statistical tests (t-test, F-test) have been shown
to be effective.”19:13:25 More sophisticated methods are also developed.®!? Filter
methods can be computed easily and very efficiently. The characteristics in the
feature selection are uncorrelated to that of the learning methods, therefore they
have better generalization property.

In wrapper type methods, feature selection is “wrapped” around a learning
method: the usefulness of a feature is directly judged by the estimated accuracy
of the learning method. One can often obtain a set with a small number of non-
redundant features,®8:23:39
acteristics of the features match well with the characteristics of the learning method.
Wrapper methods typically require extensive computation to search the best fea-

which gives high prediction accuracy, because the char-

tures.

2. Minimum Redundancy Gene Selection

One common practice of filter type methods is to simply select the top-ranked
genes, say the top 50.'> More sophisticated regression models or tests along this
line were also developed.2?34:38 So far, the number of features, m, retained in the
feature set is set by human intuition with trial-and-error, although there are studies
on setting m based on certain assumptions on data distributions.?? A deficiency
of this simple ranking approach is that the features could be correlated among
themselves.”'” For example, if gene g; is ranked high for the classification task,
other genes highly correlated with g; are also likely to be selected by the filter
method. It is frequently observed?®3? that simply combining a “very effective”
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gene with another “very effective” gene often does not form a better feature set.
One reason is that these two genes could be highly correlated. This raises the issue
of “redundancy”

The fundamental problem with redundancy is that the feature set is not a
comprehensive representation of the characteristics of the target phenotypes. There
are two aspects of this problem. (1) Efficiency. If a feature set of 50 genes contains
quite a number of mutually highly correlated genes, the true “independent” or
“representative” genes are therefore much fewer, say 20. We can delete the 30 highly

of feature set.

correlated genes without effectively reducing the performance of the prediction; this
implies that 30 genes in the set are essentially “wasted”. (2) Broadness. Because
the features are selected according to their discriminative powers, they are not
maximally representative of the original space covered by the entire dataset. The
feature set may represent one or several dominant characteristics of the target
phenotypes, but these could still be narrow regions of the relevant space. Thus, the
generalization ability of the feature set could be limited.

Based on these observations, we propose to expand the representative power of
the feature set by requiring that features are maximally dissimilar to each other,
for example, their mutual Euclidean distances are maximized, or their pair-wise
correlations are minimized. These minimum redundancy criteria are supplemented
by the usual maximum relevance criteria such as maximal mutual information with
the target phenotypes. We therefore call this approach the minimum redundancy —
maximum relevance (MRMR) approach. The benefits of this approach can be real-
ized in two ways. (1) With the same number of features, we expect the MRMR
feature set to be more representative of the target phenotypes, therefore leading to
better generalization property. (2) Equivalently, we can use a smaller MRMR fea-
ture set to effectively cover the same space as a larger conventional feature set does.

The main contribution of this paper is to point out the importance of minimum
redundancy in gene selection and provide a comprehensive study. One novel point is
to directly and explicitly reduce redundancy in feature selection via filter approach.
Our extensive experiments indicate that features selected in this way lead to higher
accuracy than features selected via maximum relevance only.

3. Criterion Functions of Minimum Redundancy
3.1. MRMR for categorical (discrete) variables

If a gene has expressions randomly or uniformly distributed in different classes, its
mutual information with these classes is zero. If a gene is strongly differentially
expressed for different classes, it should have large mutual information. Thus, we
use mutual information as a measure of relevance of genes.

For discrete/categorical variables, the mutual information I of two variables
x and y is defined based on their joint probabilistic distribution p(z,y) and the



188 C. Ding & H. Peng

respective marginal probabilities p(x) and p(y):

I(z,y) = Zp(xmyj)log]%' ®

For categorical variables, we use mutual information to measure the level of
“similarity” between genes. The idea of minimum redundancy is to select the genes
such that they are mutually maximally dissimilar. Minimal redundancy will make
the feature set a better representation of the entire dataset. Let S denote the subset
of features we are seeking. The minimum redundancy condition is

. 1 o
min Wy, W; = oF > 16, 4), (2)
i,jE€S

where we use I(7, j) to represent I(g;, g;) for notational simplicity, and |S|(= m) is
the number of features in S.

To measure the level of discriminant powers of genes when they are differen-
tially expressed for different target classes, we again use mutual information I (h, g;)
between targeted classes h = {h1, ha,...,hi} (we call h the classification variable)
and the gene expression g;. I(h, g;) quantifies the relevance of g; for the classifica-
tion task. Thus the maximum relevance condition is to maximize the total relevance
of all genes in S:

1
maxVy, Vi =g > 1(h,i), (3)
i€S

where we refer to I(h,g;) as I(h,1).

The MRMR feature set is obtained by optimizing the conditions in Egs. (2)
and (3) simultaneously. Optimization of both conditions requires combining them
into a single criterion function. In this paper we treat the two conditions equally
important, and consider two simplest combination criteria:

max(V; — W), (4)
max(V; /Wr). (5)

Our goal here is to see whether the MRMR, approach is effective in its simplest
forms. More refined variants can be easily studied later on.

Exact solution to the MRMR requirements requires O(N!51) searches (N is the
number of genes in the whole gene set, 2). In practice, a near optimal solution is
sufficient. In this paper, we use a simple heuristic algorithm to resolve this MRMR
optimization problem.

In our algorithm, the first feature is selected according to Eq. (3), i.e. the feature
with the highest I(h,%). The rest features are selected in an incremental way: earlier
selected features remain in the feature set. Suppose m features are already selected
for the set S, and we want to select additional features from the set Qg = Q— S5 (i.e.



Minimum Redundancy Feature Selection from Microarray Gene Expression Data 189

all genes except those already selected). We optimize the following two conditions:

max I(h,9), (6)

min 757 2 16.3). (7)
JES

The condition in Eq. (6) is equivalent to the maximum relevance condition in

Eq. (3), while Eq. (7) is an approximation of the minimum redundancy condition

of Eq. (2). The two ways to combine relevance and redundancy, Egs. (4) and (5),

lead to the selection criteria of a new feature:

(1) MID: Mutual Information Difference criterion,
(2) MIQ: Mutual Information Quotient criterion,

as listed in Table 1. These optimizations can be computed efficiently in O(|S] - N)
complexity.

3.2. MRMR for continuous variables

For continuous data variables (or attributes), we can choose the F-statistic between
the genes and the classification variable h as the score of maximum relevance. The
F-test value of gene variable ¢; in K classes denoted by A has the following form™'0:

gm an gk - K* 1)] /027 (8)

where g is the mean value of g; in all tissue samples, g is the mean value of g;
within the kth class, and 02 = [, (ny—1)0}]/(n—K) is the pooled variance (where
ng and oy, are the size and the variance of the kth class). F-test will reduce to the
t-test for 2-class classification, with the relation F' = t?. Hence, for the feature set
S, the maximum relevance can be written as:

1 :
max Vi, V=g > F(i,h). 9)
€S

Table 1. Different schemes to search for the next feature in MRMR optimization conditions.

Type Acronym Full Name Formula

Discrete MID Mutual information difference max [I(z h) —
i€EQg

MI Mutual informati tient {Ih [7
Q utual information quotien ngg}; i )/ 5

()]

w9}

Z
jES
Z
JES
Continuous FCD F-test correlation difference msazx [F('L, h) — Z le(i, j)l]
e jes
Z
JES

le(i )] }

FCQ F-test correlation quotient max {F i h)/[
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The minimum redundancy condition may be specified in several ways. If we use
Pearson correlation coefficient ¢(g;, g;) = c(4, j), the condition is

. 1 o
min W, W.= WZ'C(LJ)L (10)
i,J

where we have assumed that both high positive and high negative correlation
mean redundancy, and thus take the absolute value of correlations. (We may also
use Euclidean distance as a measure of redundancy. As shown in our preliminary
results,” Euclidean distance is not as effective as correlation.)

Now the simplest MRMR, optimization criterion functions involving above con-
ditions are:

(1) FCD: combine F-test with correlation using difference, and
(2) FCQ: combine F-test with correlation using quotient,

as shown in Table 1.

We use the same linear incremental search algorithm as in the discrete variable
case in Sec. 3.1. Assume m features have already been selected; the next feature
is selected via a simple linear search based on the criteria listed in Table 1 for the
above four criterion functions.

4. Class Prediction Methods
4.1. Naive Bayes (NB) classifier

The Naive Bayes (NB)?* is one of the oldest classifiers. It is obtained by using the
Bayes rule and assuming features (variables) are independent of each other given
its class. For a tissue sample s with m gene expression levels {g1,92,...,9m} for
the m features, the posterior probability that s belongs to class hy is

p(hils) o< [T plgi | ), (11)

€S
where p(g; | hi) are conditional tables (or conditional density) estimated from train-
ing examples. Despite the independence assumption, NB has been shown to have

good classification performance for many real data sets, especially for documents,?*
on par with many more sophisticated classifiers.

4.2. Support Vector Machine (SVM)

SVM is a relatively new and promising classification method.?® It is a margin clas-
sifier that draws an optimal hyperplane in the feature vector space; this defines
a boundary that maximizes the margin between data samples in two classes, there-
fore leading to good generalization properties. A key factor in SVM is to use kernels
to construct nonlinear decision boundary. We use linear kernels.
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Standard SVM is for 2 classes. For multi-class problems, one may construct
a multi-class classifier using binary classifiers such as one-against-others or all-
against-all.® Another approach is to directly construct a multi-class SVM.?7 In this
paper, we used the Matlab version of LIBSVM,'® which uses the one-against-others
approach.

4.3. Linear Discriminant Analysis (LDA)

Fisher’s LDA is a very old classification method. It assumes samples in each class
follow a Gaussian distribution. The center and covariance matrix are estimated for
each class. We assume that the off-diagonal elements in the covariance are all zero,
i.e. different features are uncorrelated. A new sample is classified to the class with
the highest probability. Different from other classifiers in this section, LDA assumes
data distribution to be Gaussian.

4.4. Logistic Regression (LR)

LRS forms a predictor variable that is a linear combination of the feature variables.
The values of this predictor variable are then transformed into probabilities by a
logistic function. This method is widely used for 2-class prediction in biostatistics.
It can be extended to multi-class problems as well.

5. Experiments
5.1. Data sets

To evaluate the usefulness of the MRMR approach, we carried out experiments
on six data sets of gene expression profiles. Two expression datasets popularly
used in research literature are the leukemia data of Golub et al.'® and the Colon
cancer data of Alon et al.? As listed in Table 2, both leukemia and colon data
sets have two classes. The colon dataset contains both normal and cancerous tissue
samples. In the leukemia dataset, the target classes are leukemia subtypes AML
and ALL. Note that in the leukemia dataset, the original data come with training
and test samples that were drawn from different conditions. Here, we combined
them together for the purpose of leave-one-out cross validation.

Table 2. Two-class datasets used in our experiments.

Dataset Leukemia Colon Cancer
Source Golub et al. (1999) Alon et al. (1999)
# Gene 7070 2000
# Sample 72 62
Class Class name  # Sample Class name # Sample
C1 ALL 47 Tumor 40

C2 AML 25 Normal 22
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Although two-class classification problems are an important type of tasks, they
are relatively easy, since a random choice of class labels would give 50% accuracy.
Classification problems with multiple classes are generally more difficult and give
a more realistic assessment of the proposed methods. In this paper, we used three
multi-class microarray data sets: NCI,3233 lung cancer,'? lymphoma' and child
leukemia.??40 The details of these data sets are summarized in Table 3. For the child
leukemia data, for each class, the number of training samples is listed followed by
the respective number of testing samples. We note that the number of tissue samples
per class is generally small (e.g. <10 for NCI data) and unevenly distributed (e.g.
from 46 to 2 in lymphoma data). This, together with the larger number of classes
(e.g. 9 for lymphoma data), makes the classification task more complex than two-
class problems. These six data sets provide a comprehensive test suit.

For the two-class problems, we used the two-sided t-test selection method, i.e.
we imposed the condition that in the features selected, the number of features with
positive t-value is equal to that with negative t-value. Compared to the standard
F-test selection, since F' = t2, two-sided ¢-test gives more balanced features whereas
F-test does not guarantee the two sides have the equal number of features. The
MRMR feature selection schemes of the F-test (as shown in Table 1) can be modified
to use two-sided t-test. We denote them as TCD (vs FCD) and TCQ (vs FCQ)
schemes.

5.2. Assessment measure

For the first 5 datasets, we assessed classification performance using the “Leave-
One-Out Cross Validation” (LOOCYV). CV accuracy provides more realistic assess-
ment of classifiers which generalize well to unseen data. For presentation clarity, we
give the number of LOOCYV errors in Tables 4-8.

For the child leukemia data, we selected features using only the training data,
and show the testing errors on the testing set in Table 9. This gives examples where
the testing samples have never been met in the feature selection process. We con-
sidered both cross-validation where features are selected using all samples together
and this training/testing procedure, and believed it is a more comprehensive study
of the MRMR, performance.

In experiments, we compared the MRMR feature sets against the baseline fea-
ture sets obtained using standard mutual information, F-statistic or t-statistic rank-
ing to pick the top m features.

5.3. Discretization for noise reduction

The original gene expression data are continuous values. We directly classified them
using SVM, LDA, and LR. We pre-processed the data so each gene has zero mean
value and unit variance.

We also discretized the data into categorical data for two reasons. The first
reason is noise reduction because the original readings contain substantial noise.



Minimum Redundancy Feature Selection from Microarray Gene Expression Data 193

4 mw:ou\wvos ydwAry z 99e)S0IJ 6D
e m JI93U9D ﬁdgﬂagww m mzo wU
12/¢ S19Y10 ¥ g pooq Sursoy G [[90-981er] 9 ueLreAQ) LD
me:
12/ TTNV-TAL 9 [[92 pauLIojsuedy, G [[eo-[rewrs 9 BIUIY MO 9D
G1/8C TIV-L 9 L pojeanyoe/Surisey 9 [euLIoN L uofoy) sfe}
ewoyduAy
9/71 TIN 6 TROI[[O] L g-dnois-py 8 BUOUR[IN 0
dkaz 0G <prordipredAy 0T g Poo[q pareAndy €1 ¢-dnois-py 8 Jsearq €D
ﬁﬂgoxﬂwﬁ
6/81 1Xdd-ved 11 ‘oyduwAry oruoIyy) 91 snourenbg 6 [euayy (46}
ewroyduwAy
9/6 1dv-40d iz [[90 g 981e[ asnyIq 12 1-dnois-py 6 DTOSN 0
S # aureu ssef)) S # aureu ssef)) S # aureu sse[)) S # awreu ssey)) sse[))
6 6 L 6 sser) #
96 96 €L 09 S #
9z0% 9z0% 816 €0L6 auen) #

(€00g) v 72 11
(200g) v #2 Yeox

(0002) ‘v %2 yopeziy

(100z) v 32 °qIRD

(0002) ‘10 32 F10YPY

(000g) 0 12 ssoy o0mog

erwonoT PlIyD

ewoyduwAr

Isoue)) Sunry

ION joseIe(]

‘(sordures jo roquunu oY) SI § #) SHIUSWILIdAXD INO U PIasn $jaseIep SSe[O-1)NIN ‘€ O[],



194 C. Ding & H. Peng

Table 4. Lymphoma data (96 samples for 9 classes) LOOCV errors.

M
Classifier Data Type Method 3 6 9 12 15 18 21 24 27 30 36 42 48 54 60

NB Discrete Baseline 38 39 25 29 23 22 22 19 20 17 19 18 18 17 17
MID 31 1510 9 9 8 6 7 7 7 4 7 5 5 8
MIQ 38 26 17 14 14 12 8 8 6 7 5 6 4 3 3

LDA Discrete Baseline 40 42 28 26 20 21 21 20 18 19 14 15 13 14 15
MID 32 15 14 10 7 5 4 5 4 6 5 3 3 4 3
MIQ 40 29 12 8 8 7 5 6 4 1 1 2 1 2 2

Continuous Baseline 66 26 26 17 17 18 18 18 15 11 14 12 11 11 13

FCD 33 17 16 10 13 11 11 9 &8 8 8 8 7 10 9

FCQ 32 1811 7 7 8 8 7 8 9 9 9 8 6 6

SVM Discrete Baseline 32 29 25 23 20 22 18 13 14 15 11 10 10 8 9
MID 2410 7 4 2 3 3 3 3 3 3 3 3 3 3

MIQ 26 21 13 9 8 7 6 5 2 1 1 2 1 2

Continuous Baseline 30 24 14 13 12 13 10 11 13 6 8 9 5 6 7

FCD 24 19 11 13 11 9 10 8 7 8 7 6 5 4 5

FCQ 31 17 9 7 6 6 8 8 6 7 7 8 7 4 4

Table 5. NCI data (60 samples for 9 classes) LOOCV errors.

M
Classifier Data Type Method 3 6 9 12 15 18 21 24 27 30 36 42 48 54 60

NB Discrete Baseline 29 26 20 17 14 15 12 11 11 13 13 14 14 15 13
MID 28 15 13 13 6 7 8 7 10
MIQ 27 21 16 13 13 8 5 5 4 3 1 1 1 1 2

N
(S8
0]
©
©

LDA Discrete Baseline 35 25 23 20 21 18 19 19 16 19 17 19 17 16 17
MID 31 20 21 19 16 16 16 16 15 17 16 15 16 16 15
MIQ 34 31 26 21 21 17 15 14 14 14 10 9 9 &8 8

Continuous Baseline 41 35 23 21 22 21 20 17 16 17 17 21 19 19 18
FCD 36 27 21 20 19 18 17 15 18 17 17 17 16 15 14
FCQ 35 25 23 22 17 18 17 18 13 14 14 12 13 15 15

SVM Discrete Baseline 34 29 27 25 21 19 19 19 20 18 17 18 18 18 16
MID 33 20 19 20 18 17 17 16 17 15 14 14 14 15 16
MIQ 33 32 20 23 22 22 14 13 13 13 9 8 7 7 8

Continuous Baseline 50 33 27 27 24 22 22 20 23 20 17 18 15 16 15
FCD 41 28 27 22 24 22 20 20 20 19 19 20 17 16 16
FCQ 44 30 26 26 25 24 23 23 19 19 17 18 17 15 18

Second, prediction methods such as NB prefer categorical data so that conditional
probability can be described using a small table. We discretized the observations
of each gene expression variable using the respective o (standard deviation) and p
(mean) for this gene’s samples: any data larger than pu + o /2 were transformed to
state 1; any data between u—o/2 and p+0/2 were transformed to state 0; any data
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Table 6. Lung data (73 samples for 7 classes) LOOCV errors.

M
Classifier Data Type Method 3 6 9 12 15 18 21 24 27 30 36 42 48 54 60
NB Discrete Baseline 29 29 24 19 14 15 10 9 12 11 12 12 10 8 9
MID 31 14 12 11 6 7 7 7 8 6 6 6 6 5 5
MIQ 40 29 17 9 5 8 6 2 4 3 3 2 4 4 3
LDA Discrete Baseline 32 31 22 16 13 10 10 10 10 10 9 9 10 10 10
MID 32 14 10 9 8 8 7 6 6 6 4 7 6 8 8
MIQ 36 26 14 7 7 7 8 8 7 7 6 5 6 7
Continuous Baseline 36 26 14 15 10 9 & 9 12 10 8 10 9 10 10
FCD 18 13 10 8 8 6 6 7 5 6 7 6 7T 6 7
FCQ 27 12 9 8 7 8 8 7 6 6 6 6 6 6 6
SVM Discrete Baseline 38 26 18 21 13 6 10 10 12 11 8 9 10 10 9
MID 19 11 7 4 7 8 5 5 6 5 5 6 6 7 7
MIQ 41 28 12 9 8 8 8 7 7 6 6 6 6 6 6
Continuous Baseline 30 23 14 15 11 9 9 10 9 8 9 10 10 9 8
FCD 24 11 13 9 8 7 6 8 7 7 8 5 5 6 7
FCQ 31 13 12 10 10 6 7 8 8 7 5 6 6 6 7
Table 7. Leukemia data (72 samples for 2 classes) LOOCYV errors.
M
Classifier Data Type Method 1 2 3 4 5 6 7 8 10 12 15 20 30 40 50
NB Discrete Baseline 4 2 1 1 1 0 00 0O 0 1 2 1 1 3
MID 4 31 11000 0O 0 0 1 1 2 1
MIQ 4 21 00 00O O O O O O O 0
LDA Discrete Baseline 4 2 2 1 1 1 11 2 1 2 2 2 2 3
MID 4 3 2 1 1 1 11 1 1 1 2 2 2 1
MIQ 4 2 2 2 2 2 2 2 2 1 1 0 0 O 0
Continuous Baseline 12 4 2 2 3 3 2 3 3 3 2 3 2 2 2
TCD 12 4 2 22 222 1 2 2 1 2 1 1
TCQ 12 4 2 21112 2 2 1 2 1 1 1
SVM Discrete Baseline 4 7 4 3 1 2 2 1 2 1 1 2 2 4 3
MID 4 3 4 3 3 2 2 2 2 1 1 1 2 2 4
MIQ 4 6 8 21000 0 0 0 0 0 O 0
Continuous Baseline 9 3 2 2 2 3 3 4 2 3 3 3 3 4 1
TCD 9 3233324 2 1 3 5 1 1 1
TCQ 9 3322130 0 0 1 1 1 1 1
LR Discrete Baseline 11 7 2 3 3 1 1 1 3 4 5 3 4 5 11
MID 1 3 2 3 4122 3 4 4 2 5 4 8
MIQ 1 6 6 2 0 000 0 0 0 0 1 1 3
Continuous Baseline 9 2 2 2 4 5 5 6 7 6 1 2 7 12 8
TCD 9 2335425 5 2 6 3 2 1 7
TCQ 9 2343221 0 0 0 1 0 2 3
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Table 8. Colon data (62 samples for 2 classes) LOOCV errors.

M

Classifier Data Type Method 1 2 3 4 5 6 7 8 10 12 15 20 30 40 50
NB Discrete Baseline 10 7 10 9 9 7 9 9 7 8 8 8 9 9 10
MID v 8 8 8 910 9 8 7 v 7 8 17T T 7

MIQ 10 812 8 8 6 6 5 4 5 7 7 8 8 7

LDA Discrete Baseline 22 14 10 10 9 9 8 8 8 8 7 9 8 9 8
MID 22 6 7 7 8 8 9 7 8 7 7 8 8 7 7

MIQ 22 15 12 9 12 10 7 7 7 8 8 7 8 8 8

Continuous Baseline 18 7T 9 8 7 7 8 &8 8 7 7T 7 9 9

TCD 88 9 6 8 6 7 7 7 v 7T 6 T 7 7 8

TCQ 8 9 6 6 7 5 6 7 7 7 7 7 7 7 7

SVM Discrete Baseline 10 16 7 7 7 7 11 10 13 12 14 14 15 18 18
MID 10 6 6 10 8 12 11 12 10 12 8 9 9 13 15

MIQ 10 10 &8 12 15 11 7 7 10 12 10 12 11 12 12

Continuous Baseline 14 10 9 11 10 9 9 9 10 10 10 13 10 9 8

TCD 4 10 8 7 7 7 6 7 8 10 8 8 8 13 14

TCQ 14 10 8 8 7 7 9 9 10 11 10 5 13 12 15

LR Discrete Baseline 10 7 8 10 11 11 &8 9 11 12 14 18 17 23 21
MID o 6 9 7 7 11 10 11 11 13 13 15 16 17 15

MIQ 10 10 8 12 12 13 8 8 10 13 14 14 18 22 27

Continuous Baseline 15 7 8 8 9 9 &8 9 11 11 12 9 19 24 16

TCD 5 7 7 9 910 9 10 9 11 14 14 13 18 13

TCQ 5 7 7 7 8 9 9 9 11 10 14 10 13 20 21

smaller than p — o /2 were transformed to state —1. These three states correspond
to the over-expression, baseline, and under-expression of genes. We also compared
different discretization schemes; partial results are summarized in Table 10.

5.4. Results

We applied the MRMR feature selection methods on both continuous and
descretized data. We performed LOOCV using NB, LDA, SVM and LR on the
first 5 datasets. The results of the LOOCV errors are shown in Tables 4-8. Due
to the space limitation we only list results of m = 3,6,9,...,54,60 for multi-class
datasets and m = 1,2,3,...,8,10,...,50 for 2-class datasets. From these compre-
hensive test results, we have following observations.

(1) For discrete datasets, the MRMR MIQ features outperform the baseline fea-
tures. This is consistent for all the classification methods and for all 5 datasets.
Several examples: For lymphoma dataset, using LDA, MIQ leads to 1 errors
while baseline leads to 9 errors (see Table 4); using SVM, MIQ leads to 1
errors while baseline leads to 8 errors. For NCI data, using Naive Bayes, MIQ
leads to 1 LOOCYV error while baseline leads to 11 errors (we quote the best
performance for a given case).
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Table 9. Child leukemia data (7 classes, 215 training samples, 112 testing samples) testing
errors.

M

Classifier Data Type Method 3 6 9 12 15 18 24 30 40 50 60 70 80 90 100

NB Discrete Baseline 52 47 44 43 36 33 84 8 82 85 79 83 82 82 88
MID 48 44 36 31 31 30 28 88 85 76 78 87 89 87 101
MIQ 43 32 30 24 21 18 15 54 70 69 76 83 90 88 91
LDA Discrete Baseline 55 47 46 38 34 27 19 28 22 19 15 14 11 8 8

MID 50 43 32 29 30 29 22 15 13 10 10 9 7
MIQ 43 43 34 27 23 21 18 16 11 11 6 4 6 6 4

Continuous Baseline 70 69 55 54 54 54 42 31 24 17 15 13 13 10 11
FCD 55 41 35 34 37 32 34 29 19 15 13 8 4 3 3
FCQ 66 62 52 42 40 41 24 22 11 10 10 9 8 9 8

[ed]
©

SVM Discrete Baseline 56 55 49 37 33 33 27 35 29 30 23 20 18 14 13

MID 45 42 33 33 25 25 29 25 26 22 20 13 10 12 9
MIQ 38 30 34 33 27 26 24 21 14 15 17 10 7 11 9

Continuous Baseline 61 55 54 49 53 59 39 38 33 29 27 21 17 18 19
FCD 46 44 39 41 48 46 37 35 28 27 29 24 21 25 24
FCQ 49 46 39 38 27 32 26 29 33 29 26 28 29 26 25

Table 10. LOOCYV testing results (#error) for binarized NCI and Lymphoma data using SVM
classifier.

M

Data Sets Method 3 6 9 12 15 18 21 24 27 30 36 42 48 54 60

NCI Baseline 34 25 23 25 19 17 18 15 14 12 12 12 13 12 10
MID 34 29 23 20 17 19 15 10 12 12 10 10 9 8 10
MIQ 35 22 22 16 12 11 10 8 5 3 4 4 2 2 3
Lymphoma Baseline 58 52 44 39 44 17 17 14 16 13 11 10 13 10 12
MID 27 14 6 10 11 9 9 10 4 5 4 4 4 4 4
MIQ 24 17 7 8 4 2 1 2 4 3 2 2 2 2 2

(2)

For continuous datasets, FCQ features outperform baseline features. This is
consistent for LDA and SVM for all three multi-class datasets, and for LDA,
SVM and LR for both 2-class datasets (here FCQ is replaced by TCQ). Exam-
ples: For lymphoma, using LDA, FCQ leads to 6 errors while baseline leads to
11 errors. For Lung, using SVM, FCQ leads to 5 errors while baseline leads to
8 errors.

Discretization of gene expression data consistently leads to better prediction
accuracy. Examples: For lymphoma, using LDA, the best continuous features
(selected by FCQ) leads to 6 errors while the best discretized features (selected
by MIQ) lead to 1 error. Using SVM, the discrete features also outperform the
continuous features. The same conclusions can be drawn for all other 4 datasets.
Note that if we restrict to baseline features, this conclusion is not true. In other
words, MRMR can make full use of the noise reduction due to discretization.
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(4) Naive Bayes performs better than LDA, SVM, LR. For the multi-class datasets
NCI and Lung, NB clearly outperforms other methods. For the 2-class datasets,
NB also performs better than other methods. However, for lymphoma, using
discrete MIQ features, LDA and SVM performs better than NB.

(5) With MRMR, for discrete data, MIQ outperforms MID; for continuous data,
FCQ (or TCQ) is better than FCD (TCD). Both MIQ and FCG use the divisive
combination of Eq. (5) while both MID and FCD use the difference combina-
tion of Eq. (4). Thus the divisive combination of relevance and redundancy is
preferred.

To test the case that features are selected using only the training set and then
tested on a separate testing set, we considered the fourth multi-class data set, child
leukemia.??4% As shown in Table 9, for the first 100 features selected, in most cases
the MRMR features lead to significant less errors than baseline features, especially
for the LDA and SVM classifiers. For the NB classifier, the better performance of
MRMR features can be seen clearly for less than 30 features (note: for this data
set the non-robustness of NB to extra-features turns out to be significant for more
than 30 features, it is only faithful to compare less than 30 features using NB in
this case).

We list the best performance of MRMR features together with the best baseline
performance in Table 11. From this table, we can quantify the improvements due
to MRMR feature selection. For the first three multi-class datasets, the LOOCV

Table 11. Comparison of the best results (lowest error rates in percentage) of the baseline and
MRMR features. Also listed are results in literature (the best results in each paper).

Data Method NB LDA SVM LR Literature

NCI Baseline 18.33 26.67 25.00 — 14.63#
MRMR 1.67 13.33 11.67 — 5-class: 0,” 0P

Lymphoma Baseline 17.71 11.46 5.21 — 3-class: 2.4,° 0°¢
MRMR 3.13 1.04 1.04 —

Lung Baseline 10.96 10.96 10.96 — —
MRMR 2.74 5.48 5.48 —

Child leukemia Baseline 29.46 7.14 11.61 — 5.364
MRMR 13.39 2.68 6.25 —

Leukemia Baseline 0 1.39 1.39 1.39 0¢
MRMR 0 0 0 0 1.39F

Colon Baseline 11.29 11.29 11.29 11.29 9.68°¢
MRMR 6.45 8.06 9.68 9.68 6.458

2Qoi and Tan used a genetic algorithm.?® PNguyen and Rocke?” used a 5-class subset of NCI
dataset and obtained 0% error rate; using the same 5-class subset, our NB achieves also 0% error
rate. “Nguyen and Rocke used 3-class subset in lymphoma dataset and obtain 2.4% error rate.
Using the same 3 classes, our NB leads to zero error. 9Li et al., using prediction by collective
likelihood.?? ®Furey et al., using SVM.'! fLee and Lee, using SVM.?! €Nguyen and Rocke, using
PLS.?6
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errors are reduced by a factor of 10. For the child leukemia data, the testing error is
reduced by several times, too. For the 2-class datasets, the improvements are also
significant, although not as dramatic as for the multi-class datasets.

To better understand the effectiveness of the MRMR, approach, we calculated
the average relevance V7 and average redundancy Wi [see Egs. (3) and (2)], as
plotted in Figs. 1(a) and 1(b). Although for MID and MIQ the relevance reduces
as compared to baseline, the redundancy also reduces considerably. This is most
clear for MIQ. The fact that the MIQ feature set is the most effective as seen from
Tables 4-8 illustrates the importance of reducing redundancy, the central theme of
this research.

The relevance and redundancy for the continuous NCI data are also plotted in
Figs. 1(c) and 1(d). For continuous data, the relevance of FCD and FCQ features is
reduced slightly from that of baseline, while the redundancy of FCD/FCQ reduce
significantly.

It is also interesting to examine how the feature sets selected via different meth-
ods intersect. For example, in Fig. 2, we plot the rates of intersecting features for
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Fig. 1. (a) Relevance V7, and (b) redundancy for MRMR features on discretized NCI dataset.
(c) Relevance Vg, and (d) redundancy W. on the continuous NCI dataset.
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the top m (1 < m < 61) features selected for the NCI and lymphoma data sets.
It is clear that the features selected via MID have some chance (>50%) to be also
selected by the baseline method. In contrast, features selected using MIQ have much
less overlap with those selected using baseline method or MID. This is because the
quotient-combination of the MRMR, scheme often has a much greater penalty on
the redundant features than the difference-combination of MRMR. We note that
the results in Fig. 2 are consistent with those in Fig. 1.

It is also of concern how the discretization method will influence the feature
selection results. We tested many different discretization parameters to transform
the original continuous gene sample data to either 2-state or 3-state variables. The
features consequently selected via MRMR, always outperform the respective fea-
tures selected using baseline methods. For simplicity, we only show two exemplary
results for the NCI and lymphoma data sets using the SVM classifier. The data
are binarized using the mean value of each gene as the threshold of that gene’s
samples. As illustrated in Table 10, we see that MRMR features always lead to
better prediction accuracy than the baseline features. For example, for NCI data,
48 baseline features lead to 13 errors, whereas MIQ features lead to only 2 errors
(3% error rate). For lymphoma data, the baseline error is never less than 10, whereas
the MIQ features in most cases lead to only 1 or 2 errors (1~2% error rate). These
results are consistent with those shown in Tables 4 and 5. This shows that under
different discretization schemes the superiority of MRMR over conventional feature
selection schemes is prominent.

5.5. Comparison with other work

Results of similar class prediction on microarray gene expression data obtained by
others are listed in Table 11. For NCI, our result of LOOCYV error rate is 1.67%
using NB, whereas Ooi and Tan?® obtained 14.6% error rate. On the 5-class subset
of NCI, Nguyen and Rocke?” obtained 0% rate, which is the same as our NB results
on the same 5-class subset.

For lymphoma data (Table 4), our result is LOOCV error rate of 1%. Using
3 classes only, Nguyen and Rocke?” obtained 2.4%; on the same 3 classes, our LDA
results is 0% error rate.

For child leukemia data, Li et al.?? obtained 5.36% error rate using collective
likelihood. In our best case, the MRMR features lead to the 2.68% error rate.

The leukemia data® is a most widely studied dataset. Using MRMR feature
selection, we achieve 100% LOOCYV accuracy for every classification methods. Furey
et al.'! obtained 100% accuracy using SVM, and Lee and Lee?! obtained 1.39% error
rate.

*Many classification studies have used leukemia and colon datasets. Due to space limitation, we
only list two for each dataset in Table 11.
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For colon data, our result is 6.45% error rate, which is the same as Nguyen and
Rocke?” using PLS. The SVM result from Furey et al.'! is 9.68%.

6. Discussions

In this paper we emphasize the redundancy issue in feature selection and propose
a new feature selection framework, the minimum redundancy — maximum relevance
(MRMR) optimization approach. We studied several simple forms of this approach
with linear search algorithms, and performed experiments on 6 gene expression
datasets. Using Naive Bayes, linear discriminant analysis, logistic regression and
SVM class prediction methods, we computed the leave-one-out cross validation
accuracy. These experiment results clearly and consistently show that the MRMR
feature sets outperform the baseline feature sets based solely on maximum relevance.
For discrete features, MIQ is the better choice; for continuous features, FCQ is the
better choice. The divisive combination of relevance and redundancy of Eq. (5)
appears to lead features with the least redundancy.

The main benefit of MRMR feature set is that by reducing mutual redundancy
within the feature set, these features capture the class characteristics in a broader
scope. Features selected within the MRMR framework are independent of class
prediction methods, and thus do not directly aim at producing the best results
for any prediction method. The fact that MRMR features improve prediction for
all four methods we tested confirms that these features have better generalization
property. This also implies that with fewer features the MRMR feature set can
effectively cover the same class characteristic space as more features in the baseline
approach.

Our extensive tests, as shown in Tables 4-9, also show that discretization of
the gene expressions leads to clearly better classification accuracy than the original
continuous data.

For biologists, sometimes the redundant features might also be important.
A Bayesian clustering method!*3%3! can be developed to identify the highly corre-
lated gene clusters. Then, representative genes from these clusters can be combined
to produce good prediction results. We find that our MRMR approach is essentially
consistent with the variable selection method in other papers.!430:31
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